66 research outputs found

    On the solutions of a class of difference equations

    Get PDF
    AbstractIn this note we investigate the solutions of a class of difference equations and prove that Conjectures 4.8.2, 4.8.3, 5.4.6 and 6.10.3 proposed by M. Kulenovic and G. Ladas in [M. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, with Open Problems and Conjectures, Chapman & Hall/CRC Press, 2002] are true

    Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales

    Get PDF
    We establish some new oscillation criteria for nonlinear dynamic equation of the form on an arbitrary time scale with , where are positive rd-continuous functions. An example illustrating the importance of our result is included

    The periodic points of ε-contractive maps in fuzzy metric spaces

    Full text link
    [EN] In this paper, we introduce the notion of ε-contractive maps in fuzzy metric space (X, M, ∗) and study the periodicities of ε-contractive maps. We show that if (X, M, ∗) is compact and f : X −→ X is ε-contractive, then P(f) = ∩ ∞n=1f n (X) and each connected component of X contains at most one periodic point of f, where P(f) is the set of periodic points of f. Furthermore, we present two examples to illustrate the applicability of the obtained results.Project supported by NNSF of China (11761011) and NSF of Guangxi (2020GXNSFAA297010) and PYMRBAP for Guangxi CU(2021KY0651)Sun, T.; Han, C.; Su, G.; Qin, B.; Li, L. (2021). The periodic points of ε-contractive maps in fuzzy metric spaces. Applied General Topology. 22(2):311-319. https://doi.org/10.4995/agt.2021.14449OJS311319222M. Abbas, M. Imdad and D. Gopal, ψ-weak contractions in fuzzy metric spaces, Iranian J. Fuzzy Syst. 8 (2011), 141-148.I. Beg, C. Vetro, D, Gopal and M. Imdad, (Φ, ψ)-weak contractions in intuitionistic fuzzy metric spaces, J. Intel. Fuzzy Syst. 26 (2014), 2497-2504. https://doi.org/10.3233/IFS-130920A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1989), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4V. Gregori and J. J. Miñana, Some remarks on fuzzy contractive mappings, Fuzzy Sets Syst. 251 (2014), 101-103. https://doi.org/10.1016/j.fss.2014.01.002V. Gregori and J. J. Miñana, On fuzzy PsiPsi-contractive sequences and fixed point theorems, Fuzzy Sets Syst. 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9J. Harjani, B. López and K. Sadarangani, Fixed point theorems for cyclic weak contractions in compact metric spaces, J. Nonl. Sci. Appl. 6 (2013), 279-284. https://doi.org/10.22436/jnsa.006.04.05X. Hu, Z. Mo and Y. Zhen, On compactnesses of fuzzy metric spaces (Chinese), J. Sichuan Norm. Univer. (Natur. Sei.) 32 (2009), 184-187.I. Kramosil and J. Michàlek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344.D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Sys. 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006D. Mihet, A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst. 251 (2014), 83-91. https://doi.org/10.1016/j.fss.2014.04.010B. Schweizer and A. Sklar, Statistical metrics paces, Pacif. J. Math. 10 (1960), 385-389. https://doi.org/10.2140/pjm.1960.10.313Y. Shen, D. Qiu and W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Letters 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002S. Shukla, D. Gopal and A. F. Roldán-López-de-Hierro, Some fixed point theorems in 1-M-complete fuzzy metric-like spaces, Inter. J. General Syst. 45 (2016), 815-829. https://doi.org/10.1080/03081079.2016.1153084S. Shukla, D. Gopal and W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets Syst. 359 (2018), 85-94. https://doi.org/10.1016/j.fss.2018.02.010D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013), 108-114. https://doi.org/10.1016/j.fss.2013.01.012D. Zheng and P. Wang, On probabilistic Ψ-contractions in Menger probabilistic metric spaces, Fuzzy Sets Syst. 350 (2018), 107-110. https://doi.org/10.1016/j.fss.2018.02.011D. Zheng and P. Wang, Meir-Keeler theorems in fuzzy metric spaces, Fuzzy Sets Syst. 370 (2019), 120-128. https://doi.org/10.1016/j.fss.2018.08.01

    The depth and the attracting centre for a continuous map on a fuzzy metric interval

    Full text link
    [EN] Let I be a fuzzy metric interval and f be a continuous map from I to I. Denote by R(f), Ω(f) and ω(x, f) the set of recurrent points of f, the set of non-wandering points of f and the set of ω- limit points of x under f, respectively. Write ω(f) = ∪x∈Iω(x, f), ωn+1(f) = ∪x∈ωn(f)ω(x, f) and Ωn+1(f) = Ω(f|Ωn(f)) for any positive integer n. In this paper, we show that Ω2(f) = R(f) and the depth of f is at most 2, and ω3(f) = ω2(f) and the depth of the attracting centre of f is at most 2.Project supported by NNSF of China (11761011, 71862003) and NSF of Guangxi (2018GXNSFAA294010) and SF of Guangxi University of Finance and Economics (2019QNB10).Sun, T.; Li, L.; Su, G.; Han, C.; Xia, G. (2020). The depth and the attracting centre for a continuous map on a fuzzy metric interval. Applied General Topology. 21(2):285-294. https://doi.org/10.4995/agt.2020.13126OJS285294212A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Sys. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Sys. 27 (1989), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4V. Gregori and J. J. Miñana, Some remarks on fuzzy contractive mappings, Fuzzy Sets Sys. 251 (2014), 101-103. https://doi.org/10.1016/j.fss.2014.01.002V. Gregori and J. J. Miñana, On fuzzy Ψ-contractive sequences and fixed point theorems, Fuzzy Sets Sys. 300 (2016), 93-101. https://doi.org/10.1016/j.fss.2015.12.010V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Sys. 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9X. Hu, Z. Mo and Y. Zhen, On compactnesses of fuzzy metric spaces (Chinese), J. Sichuan Norm. Univer. (Natur. Sei.) 32 (2009), 184-187.I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344.C. Li and Y. Zhang, On connectedness of the Hausdorff fuzzy metric spaces, Italian J. Pure Appl. Math. 42 (2019), 458-466.D. Mihet, Fuzzy Ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Sys. 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006D. Mihet, A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Sys. 251 (2014), 83-91. https://doi.org/10.1016/j.fss.2014.04.010J. Rodríguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys. 147 (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007B. Schweizer and A. Sklar, Statistical metrics paces, Pacif. J. Math. 10 (1960), 385-389. https://doi.org/10.2140/pjm.1960.10.313Y. Shen, D. Qiu and W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Letters 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Sys. 222 (2013), 108-114. https://doi.org/10.1016/j.fss.2013.01.012D. Zheng and P. Wang, On probabilistic Ψ-contractions in Menger probabilistic metric spaces, Fuzzy Sets Sys. 350 (2018), 107-110. https://doi.org/10.1016/j.fss.2018.02.011D. Zheng and P. Wang, Meir-Keeler theorems in fuzzy metric spaces, Fuzzy Sets Sys. 370 (2019), 120-128. https://doi.org/10.1016/j.fss.2018.08.01

    Asymptotic Behavior of Solutions of Higher-Order Dynamic Equations on Time Scales

    Get PDF
    We investigate the asymptotic behavior of solutions of the following higher-order dynamic equation , on an arbitrary time scale , where the function is defined on . We give sufficient conditions under which every solution of this equation satisfies one of the following conditions: (1) ; (2) there exist constants with , such that , where are as in Main Results.</p

    Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters

    Get PDF
    In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters {xn=max{An,zn1yn2}, yn=max{Bn,wn1xn2}, zn=max{Cn,xn1wn2}, wn=max{Dn,yn1zn2},   n{0,1,2,}, \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, where An,Bn,Cn,Dn(0,+) A_n, B_n, C_n, D_n\in (0, +\infty) are periodic sequences with period 2 and the initial values xi,yi,zi,wi(0,+) (1i2) x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) . We show that if \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 , then this system has unbounded solutions. Also, if min{A0C1,B0D1,A1C0,B1D0}1 \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 , then every solution of this system is eventually periodic with period 4 4 .</p

    Global Behavior of the Difference Equation x

    Get PDF
    We study the following difference equation xn+1=(p+xn-1)/(qxn+xn-1), n=0,1,…, where p,q∈(0,+∞) and the initial conditions x-1,x0∈(0,+∞). We show that every positive solution of the above equation either converges to a finite limit or to a two cycle, which confirms that the Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true
    corecore